
www.manaraa.com

Gauss: A Framework for Verifying
Scientific Computing Software

Robert Palmer, Steve Barrus, Yu Yang,
Ganesh Gopalakrishnan, Robert M. Kirby

School of Computing, The University of Utah, Salt Lake City, Utah

Abstract

High performance scientific computing software is of critical international impor-
tance as it supports scientific explorations and engineering. Software development
in this area is highly challenging owing to the use of parallel/distributed program-
ming methods and complex communication and synchronization libraries. There
is very little use of formal methods to debug software in this area, given that the
scientific computing community and the formal methods community have not tra-
ditionally worked together. The Utah Gauss project strives to make a difference by
involving a domain expert in scientific computing and one in formal methods. We
currently focus on MPI programs which are the kind that run on over 60% of world’s
supercomputers. These are programs written in C / C++ / FORTRAN employing
message passing concurrency supported by the Message Passing Interface (MPI)
library. Large-scale MPI programs also employ shared memory threads to manage
concurrency within smaller task sub-groups, capitalizing on the recent availability of
small-scale (e.g. single-chip) shared memory multiprocessors; such mixed program-
ming styles can result in additional bugs. MPI libraries themselves can be buggy
as they strive to implement complex requirements employing aggressive techniques
such as multi-threading. We have built a model extractor that extracts from MPI C
programs a formal model consisting of communicating processes represented in Mi-
crosoft’s Zing modeling language. MPI library functions are also being modeled in
Zing. This allows us to run formal analysis on the models to detect bugs in the MPI
programs being analyzed. Our preliminary results and future plans are described;
in addition, our contribution is to expose the special needs of this area and suggest
specific avenues for problem-driven advances in software model-checking applied to
scientific computing software development and verification.

1 Context and Motivation

Scientific supercomputing enables scientists and engineers to conduct experi-
ments and design new products using parallel simulation. Since it plays such

Preprint submitted to Elsevier Preprint 19 May 2005

www.manaraa.com

a crucial role, supercomputing software must run correctly, give predictable
results within predictable execution times, and not waste valuable researcher-
or supercomputer time: even the energy bills of supercomputers quickly add
up, let alone all the other costs! Parallel simulation is typically accomplished
by capturing the system under study through a model (such as triangular
meshes), subdividing the model, and distributing the pieces across multiple
computers. These computers (often consisting of tens of thousands of proces-
sors) then simulate their pieces, exchanging information either through mes-
sages (usually at the macroscopic level) or shared memory (usually at finer
grains). After decades of considerable turmoil, the community of supercom-
puter programmers has settled on a few choices with regard to the communi-
cation libraries: the Message Passing Interface (MPI) [1] for message passing
and Posix [2] / OpenMP [3], etc., for shared memory. In fact, it has been
estimated that MPI is used by well over 60% of world’s supercomputer pro-
grammers, with this number rapidly growing. The community of programmers
interested in MPI includes researchers in physics, chemistry, computational fi-
nance, and drug discovery (to name a few areas). Programmers coming from
various application domains often do not have the training to employ advanced
programming methods nor capabilities (or even awareness) with regard to for-
mal verification tools. Thus they grapple with concurrency issues that, on one
hand, can be understood and attacked with today’s relatively mature software
model-checking methods. On the other hand, one truly has to build tools and
confront these issues, as the devil is in the detail. Most importantly, one often
makes serendipitous advances by working in new domains. With these goals
in mind, the Utah Gauss project hopes to contribute to advancements in the
verification of MPI- and thread-based codes employed in scientific program-
ming. Our initial focus will be on MPI; this will be followed by focus on
thread-level modeling, mixed-style programming, and library modeling (all in
some scheduling order yet to be determined).

Roadmap: We now provide a description of some of the complexity issues in
this area that we are aware of (Section 1.1), an overview of MPI (Section 1.2,
the design of the Gauss framework and justification of our design choices
(Section 2), results (Section 3), and conclusions (Section 4).

Related Work: A plethora of bugs possible in MPI programs is discussed
in [4]. The parallel programming community employs several conventional
debugging tools such as TotalView [5], Parallel DBX [6], and MpiGdb [7]
to debug MPI programs. More advanced tools such as Umpire [8] exam-
ine bus traces and infer the sequences of MPI calls executed. The recently
proposed tool MPICHECK [9] makes several advances over traditional ap-
proaches, including algorithms to detect deadlocks. By analyzing sequences
of these events, erroneous scenarios can often be quickly detected. While these
tools help visualize program execution as well as tune their performance to

2

www.manaraa.com

some extent, they do not help exhaustively search through the state-space of
abstracted models, which is what model-checkers are good at.

The only prominent formal methods activity in this area (that we are aware
of) is described in several papers written by Siegel, Avrunin and Mironova
[10,11,12,13,14,15]. We discuss only two papers due to lack of space. In [13],
the authors identify a formal subset of MPI that, essentially, omits wild-card
receive statements. They prove that if MPI programs can be shown to be
deadlock-free under this assumption, then the introduction of buffering does
not introduce any deadlocks. In [12], the work closest to ours in terms of
thrust is presented. They illustrate the power of SPIN to model MPI program
control skeletons.

1.1 An overview of complexity issues

Over the years, the MPI library has steadily evolved from MPI-1, which con-
tained 128 calls, through intermediate versions to the present MPI-2 standard
which contains 194 calls. People are known to misuse the MPI library as
they fail to understand it well enough. In addition, most platforms support
a version of MPI that is somewhere in-between version 1 and 2. MPI li-
braries are written in various languages (C, C++, FORTRAN, etc.) with the
host program calling the MPI functions also (usually) written in the same
languages. It has also been observed that true shared memory interactions
achieved through the API supported by thread libraries (such as POSIX or
OpenMP) can be faster than those interactions achieved through MPI libraries
even if the “message passing” in MPI is implemented through shared mem-
ory variables; thus, it is customary to find thread programming mixed with
MPI programming, especially if the hardware realities (e.g., availability of
multiple CPU-core chips) encourage this trend. Even “pure” MPI programs
become quite involved, as their organization responds to the underlying hard-
ware organization—e.g., the number of message adapters provided per CPU.
Therefore, when the computational profile changes (e.g., a car being simulated
suddenly crumples, sending significant quantities of the car’s mass to one pro-
cessor to handle), techniques such as adaptive mesh refinement [16] are invoked
to re-define the task distribution through dynamic load balancing.

As real-world examples of problems in day-to-day usage of MPI, in the
Uintah [17] Computational Framework (UCF) research project at Utah, a
set of software components and libraries are being developed to facilitate the
simulation of Partial Differential Equations on Structured AMR grids using
hundreds to thousands of processors. UCF is regularly used on hundreds of
processors on several platforms. This code has exposed bugs (deadlocks) in at
least two MPI implementations, and it was very difficult to determine whether
the problem was with the UCF or the MPI library. In one instance, one
deadlock took one person-month to ultimately track down using conventional

3

www.manaraa.com

debugging methods.

It is important to recall that supercomputer users are inherently performance-
driven. However, MPI is intended to be a portable standard only for the
overall semantics - not performance. This means that MPI programs are al-
most always modified after porting. This can introduce the following kinds
of bugs: (i) the new platform may not implement an exactly compatible MPI
library, (ii) the original implementation may have worked due to liberal re-
source availabilities, which may not be true of the (still legal) new platform;
hence deadlocks are likely, and (iii) the user may rearrange the computational
structures for more “balanced” performance, which can cause a new crop of
bugs to emerge.

1.2 An Overview of MPI

It is our frequent experience that people in software model-checking have not
seen even one MPI program; to redress this, we describe a simple MPI C pro-
gram in detail (Figure 1). Like many (most?) MPI programs, this program
also follows the Single Program Multiple Data (SPMD) paradigm. After ini-
tializing the MPI system via MPI_Init, a query for the number of processes
(MPI_Comm_size) is made. Each process then finds out its rank in the pool of
processes (MPI_Comm_rank). Following that, the even-numbered processes (if
mynode%2==0) perform two sends while the odd-numbered processes perform
two (hopefully) matching receives. A barrier is then executed by all the
processes. Thereafter, the odd-numbered processes (if mynode%2==1) per-
form the sends with the even-numbered processes performing receives. The
arguments of various MPI calls differ; consider one example:
MPI_Send(&mynode, CNT, MPI_INT, (mynode-1+totalnodes)%totalnodes, TAG, MPI_COMM_WORLD);

Here, &mynode is the buffer from which the data originates, CNT is the number
of bytes sent, MPI_INT is the datatype, (mynode-1+totalnodes)%totalnodes
is the destination process, TAG is the tag, and MPI_COMM_WORLD is the commu-
nicator. The tag and communicator must match in order for a MPI_Receive
to obtain the data sent. Further details about MPI may be understood from
references such as [1].

2 Model Extraction and Verification in Gauss

MPI programs developed within the Uintah framework or other existing frame-
works will be input by a model-extractor (Figure 2). Currently, we use CIL
[18] and generate Zing [19] as the result. The extracted models will be model-
checked for errors as well as potential non-portability that may result from
MPI platform variations (e.g., if the MPI program assumes implementation-
provided buffering which the MPI standard does not guarantee, it could dead-
lock when ported). We envisage having to deal with unprovable assertions via
runtime checking methods.

4

www.manaraa.com

#include<mpi.h>

#define CNT 1

#define TAG 1

int main(int argc, char ** argv){

int mynode = 0;

int totalnodes = 0;

MPI_Status status;

int recvdata0 = 0;

int recvdata1 = 0;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &totalnodes);

MPI_Comm_rank(MPI_COMM_WORLD, &mynode);

if(mynode%2 == 0){

MPI_Send(&mynode,CNT,MPI_INT,(mynode+1)%totalnodes,TAG,MPI_COMM_WORLD);

MPI_Send(&mynode,CNT,MPI_INT,(mynode-1+totalnodes)%totalnodes,

TAG,MPI_COMM_WORLD);

}

else{

MPI_Recv(&recvdata0,CNT,MPI_INT,(mynode-1+totalnodes)%totalnodes,

TAG,MPI_COMM_WORLD,&status);

MPI_Recv(&recvdata1,CNT,MPI_INT,(mynode+1)%totalnodes,

TAG,MPI_COMM_WORLD,&status);

}

MPI_Barrier(MPI_COMM_WORLD);

if(mynode%2 == 1){

MPI_Send(&mynode,CNT,MPI_INT,(mynode+1)%totalnodes,TAG,MPI_COMM_WORLD);

MPI_Send(&mynode,CNT,MPI_INT,(mynode-1+totalnodes)%totalnodes,

TAG,MPI_COMM_WORLD);

}

else{

MPI_Recv(&recvdata0,CNT,MPI_INT,(mynode-1+totalnodes)%totalnodes,

TAG,MPI_COMM_WORLD,&status);

MPI_Recv(&recvdata1,CNT,MPI_INT,(mynode+1)%totalnodes,

TAG,MPI_COMM_WORLD,&status);

}

MPI_Barrier(MPI_COMM_WORLD);

MPI_Finalize();

}

Fig. 1. An Example MPI Program

2.1 Choice of Zing

Zing modeling language is designed for expressing concurrent models of soft-
ware. Some of the most relevant (for us) differences between Zing and other
modeling languages such as Promela are that Zing follows an object-oriented
style, supports dynamic process creation, dynamic data allocation, and excep-
tions. The basic structure of a model in Zing is a class. Data and procedures
that have operations related to these data are encapsulated within each class.
Currently Zing does not support multiple inheritance.

The data types in Zing includes both primitive types, such as boolean,

5

www.manaraa.com

Verification
Models

MPI Programs
with Runtime

Assertions

MPI
Programs

Frameworks

Existing
MPI Programming

Model
Extraction

Analysis for non−portability
and Model−checking

Formal analysis

Fix errors

Formal Assertions to
be Checked at Runtime

Dynamic Verification results
and Assertions for
Runtime Fault Detection

Uintah
Computational

Framework

Fig. 2. Conceptual Flow Diagram of Proposed Framework

enumeration, integer and ranges, and user-defined complex types such as array,
set, channel, etc. Unlike some other modeling languages in which the size of a
channel is fixed, Zing supports channels of unbounded size. Zing also support
dynamically-sized arrays. As for the control flow, Zing supports sequential
control as well as procedure call and exceptional handling. When a procedure
is invoked in Zing, parameters of primitive types are passed by value, and
parameters of user-defined complex types are passed by reference.

To specify the entry points of a program and process creation, Zing pro-
vides keywords activate and async, with which users can specify how the pro-
gram is configured and processes are dynamically created. Once a process is
created, it executes concurrently with all other runnable processes. Zing pro-
cesses can communicate with each other via shared variables, message queues
etc. Two special statement, send and receive, are provided in Zing to express
message-based communication.

Zing uses select statement to specify possible blocking and randomness. A
list of conditional expression and corresponding actions are required for each
select statement. A process in the Zing model is blocked if and only if none of
the conditions is satisfied. If more than one conditions is satisfied, Zing will
pick up one of them nondeterministically. Zing also provide choose operator
to support explicit non-deterministic selection.

In summary, the choice of Zing allows us to use an expressive language to
express the models, and employ Zing model-checkers developed by microsoft
to get readily started. We will also develop an in-house model-checker for Zing
(an effort that has been started) so that we may tune it as we see fit for this
domain. Further details about Zing are described in [20,21].

2.2 Model Extraction Details

Previous discussions allow us to present our design as well as justify various
choices we have made. Given the large sizes of MPI C programs, it is tempting
to abstract the program and then perform model-extraction. We chose to
instead extract everything, leaving it to a later abstraction tool to simplify

6

www.manaraa.com

the extracted Zing description; in other words, we decided to keep model
extraction and model abstraction separate. This is safe from the point of
view of not missing out corner-cases which we are yet to fully determine (this
being a new domain of work). Actually, we might keep most of the extracted
Zing description abstract, and fly a “concretization lens” over the model to
detail any chosen aspect of the model. This also gives us the ability to handle
multiple host languages: they all can be subject to model-extraction to write
out one common language, namely Zing.

A Zing model is a collection of classes that are similar to a Java or C#
program [21,20]. Zing supports concurrency throught the presence of threads
that are explicitly spawned through decorating a method with the async key-
word. Thus a thread is the primary unit of sequential abstraction in a Zing
model. This choice would allow us to model the primary unit of sequential ab-
straction in an MPI C program (namely, a process) and the unit of abstraction
in thread-based code (namely, a thread) uniformly. We create a special class
for the model and for each function in the program create a Zing class. Global
variables become members of the class while local variables are retained within
the scope of the Zing method within the class. The C language uses the main
function as the primary entry point. Thus scoping and process interaction are
modeled using classes and thread interaction.

The Zing language is object oriented. As such all objects are created on
the Zing heap. In C, however, it is possible to take the address of an object
(struct or base type) that is allocated on the stack and treat it the same as
though it were allocated on the heap. It is also possible to perform pointer
manipulations using arithmetic operations. Likewise it is possible to cast an
integer to a pointer and then perform operations on the memory at the given
address. Although from an object oriented stance these may be less desirable
program constructs, in C these are widely used. To facilitate the extraction
of programs that use these and other C-isms we have created a model of the
base types of the C language where every memory allocation whether it be
on the C stack or C heap is represented on the Zing heap as an object. This
makes it possible to represent operations such as taking the address of a stack
object. It will also allow us to build in safety checks to pointer arithmetic and
array accesses that are not present in the actual C program.

The Zing modeling language has all of the basic types of C# except for
char and string and adds the type of byte. Our model of basic C types
includes pointer, char, short, integer, floatingpoint, and doublefloat-
ingpoint. Our plan is to initially de-emphasize the handling of floating point
values, as we hope to be able to determine the effect of data on control through
abstraction/refinement techniques. In MPI, some of these interactions are, for
instance, for convergance testing (e.g., “has the error value under L2-norm
gone below ε?”), and we hope to cover these cases through non-deterministic

7

www.manaraa.com

MPI_Recv(&recvdata1,1,MPI_INT,(mynode+1)%totalnodes,1,MPI_COMM_WORLD,&status);

__cil_tmp45 = integer.addressof(recvdata1);

__cil_tmp46 = integer.create(1);

__cil_tmp47 = integer.create(6);

__cil_tmp48 = integer.create(1);

__cil_tmp49 = integer.add(mynode, __cil_tmp48);

__cil_tmp50 = integer.mod(__cil_tmp49, totalnodes);

__cil_tmp51 = integer.create(1);

__cil_tmp52 = integer.create(91);

__cil_tmp53 = __anonstruct_MPI_Status_1.addressof(status);

MPI_Recv(__cil_tmp45, __cil_tmp46, __cil_tmp47, __cil_tmp50,

__cil_tmp51, __cil_tmp52,__cil_tmp53);

Fig. 3. An extracted function call for MPI Recv.

over-approximation.

Another important feature of MPI programs is the abundance of arrays and
vectors. Arrays and operations on arrays are also represented in the model.
Operations on each of these base types is carried out using an atomic static
method call for that class. Constants in the program are not represented as
constants in the model, rather an object is allocated for the constant and the
value of the object is set to the constant.

The Zing modeling language requires that some operations that can be
performed in a single C statement be simplified to multiple Zing statements.
To do the extraction and simplification we have modified the CIL [18] tool in
two important ways. First we have modified the pretty printer such that it
targets Zing syntax (wich is similar to C in many ways but required a little
tweaking) and the environment model described briefly above. The second
modification was made to the three address visitor of CIL. This visitor seeks
to simplify C programs to a three address representation. We modified this
visitor to create a simplified Zing instead of a pure three address code.

Figure 3 shows the C code and Zing representation for an invocation of
MPI Recv from the Sideswap1 example. Constants such as 1, MPI INT, and
MPI COMM WORLD are represented explicitly as integers allocated on the heap.
The address of, addition, and modulous operations were lifted out of the
method call and performed seperately. Numerous modifications to the model
extractor are currently in progress including the representation of casts, the
addition of coalescing the simplified sequence of Zing statements into atomic
regions thereby simplifying the extracted model, and constant protection and
reuse (for example, the extracted version of Figure 3 has three heap locations
to represent the number 1).

8

www.manaraa.com

Sideswap1 Sideswap2 Sideswap3

0 1 2 3 0 1 2 3 0 1 2 3

+---->| | | +---->| | | +---->| | |

+-----+-----+---->| | | +---->| | +---->| |

| | +---->| | +---->| | | | +---->|

| |<----+ | |<----+-----+-----+ |<----+-----+-----+

=================== ===================

| +---->| | |<----+ | |

|<----+ | | | | |<----+

|<----+-----+-----+ +-----+-----+---->|

| | |<----+ | |<----+ |

Fig. 4. Communication pattern for the Sideswap1 and Sideswap2 examples. Also
the cyclic dependency (causing deadlock) for the Sideswap3 example.

2.3 Library Modeling

For this project, a simple MPI library implementation was created in Zing.
This MPI library includes MPI Init, MPI Finalize, MPI Comm rank,
MPI Comm size, MPI Send, MPI Recv, MPI Bcast and MPI Barrier. This
subset of the MPI standard proved to be enough to model many small sample
MPI programs. Certain data structures had to be created for this implemen-
tation. The most important one was the MPI Communicator class. An MPI
communicator is a means of sending and receiving messages for a collection
of processes. A general global communicator, MPI COMM WORLD, is pre-
defined to include all processes. We will only consider this communicator for
simplicity. The MPI Comm class was implemented as a link-list that func-
tions much like a common queue. Every time a message needs to be sent or
received, a request is placed on this queue and can later be taken off of the
queue by a matching send or receive. New requests are added to the end on
the list and the search for a match is always started at the head of the list.
This preserves the message ordering required by the MPI standard.

We discuss MPI Send (others omitted). MPI Send can be broken down
into a series of smaller operations. It first needs to check to see if there is
a matching receive on the message queue. If there is one that matches then
the receive request is taken off the queue and the send is used to fulfill that
request. The data is copied from the send buffer to the buffer provided by the
receive. If no matching message was found, the send request is placed on the
message queue and it remains there until a matching receive call is made.

9

www.manaraa.com

Name C LOC Zing LOC Processes Time States

Sideswap1.c 38 1254 2 4 12882

Sideswap2.c 42 1222 2 4 13339

Sideswap3.c 26 1118 24 2 2522

Fig. 5. Table of results from the Gauss Framework for MPI

3 Experimental Results

We have a preliminary implementation of the toolflow in Figure 2 through
which three examples (Figure 4) have been run. The Sideswap1 program is a
simple pairwise communication pattern (presented through actual MPI code
in Figure 1). Every process in the computation is assigned an integer value
known as it’s rank. This program causes every evenly ranked process to send
to the odd ranked neighbor both to the right and left in a ring. The odd
ranked processes perform matching receives from their even ranked neigh-
bors. Then all processes synchronize on the barrier. In the second half of
the program the odd ranked processes send and the even ranked processes
receive. The Sideswap2 program is also a simple pairwise communication pat-
tern. Even ranked processes send to their neighbor above and then receive
from their neighbor below. After a synchronization the odd ranked processes
do the same. The Sideswap3 program has a deadlock in a system where the
MPI framework does not provide any buffering. This is a common source of
bugs in MPI programs: MPI programmers who find that their code works on
an installation often find that it does not work on another installation. As
pointed out earlier, this is an example of an MPI program that (perhaps inad-
vertently) assumes implementation-provided buffering and orchestrates “too
many sends” to occur in sequence, while the MPI standard does not provide
such buffering guarantees. Hence the new installation to which the code is
ported can exhibit a resource deadlock. Model-checking techniques permit
the amount of buffering provided by the MPI communicator to be modeleled
through non-deterministic over-approximation, thus helping to shake out a
whole class of bugs.

4 Concluding Remarks

This paper is to encourage the software model-checking community to pay at-
tention to an important area of international priority—namely supercomput-
ing software development—and develop tools and techniques to support this
area. We described the approach taken in the Utah Gauss framework which
addresses various needs, including handling MPI and Pthreads programs, dif-

10

www.manaraa.com

ferent host languages, and MPI/Pthreads library models. Our preliminary
implementation consists of a model extractor written using Berkeley CIL and
which produces Zing models. Currently we model-check the Zing models us-
ing Microsoft’s Zing model-checker, and we are able to detect “textbook” bug
descriptions using this tool flow.

Given the infancy of our work, we have quite a few exciting future plans.
The foremost will be to develop an abstraction-refinement loop to handle very
large Zing models. The second will be partial order reduction techniques that
can capitalize on the semantics of MPI library functions. We envisage building
static- and dynamic abstraction tools, with the project anticipated to last at
least three years, producing at least two PhD students.

References

[1] MPI. http://www-unix.mcs.anl.gov/mpi/.

[2] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley, 1997.

[3] OpenMP. http://www.openmp.org.

[4] Marc Snir and William Gropp. MPI: The Complete Reference. The MIT Press,
1998.

[5] TotalView. http://www.etnus.com/TotalView/.

[6] Parallel DBX Software. http://hpcf.nersc.gov.

[7] http://www-unix.mcs.anl.gov/mpi/mpich/docs/userguide/node26.htm.

[8] Jeffrey S. Vetter and Bronis R.de Supinski. Dynamic software testing of mpi
applications with umpire. In Procedings of the 2000 IEEE/ACM conference on
SuperComputing, 2000.

[9] Glenn Luecke, Yan Zou, James Coyle, Jim Hoekstra, and Marina Kraeva.
Mpi-check:a tool for checking fortran 90 mpi programs. In Concurrency and
Computation:Practice and Experience, 2003.

[10] Stephen F. Siegel and George S. Avrunin. Modeling wildcard-free mpi program
for verification. In to appear in Proceedings of the ACM SIGPLAN Symposium
on Principles and Practices of Parallel Programming, 2005.

[11] Stephen F. Siegel. Efficient verification of halting properties for mpi programs
with wildcard receives. In Proceedings of Verificaiton, Model Checking,and
Abstract Interpretation: 6th International Conference, VMCAI, 2005.

[12] Stephen F. Siegel and George S. Avrunin. Verification of mpi-based software for
scientific computation. In Procedings of the 11th International SPIN Workshop,
2004.

11

www.manaraa.com

[13] Stephen F. Siegel and George S. Avrunin. Modeling mpi programs for
verification. In Technical Report UM-CS-2004-75, 2004.

[14] Stephen F. Siegel and George S. Avrunin. Finite-state verification for high
performance computing. In Proceedings of the Second International Workshop
on Software Engineering for High Performance Computing System Applications,
2005.

[15] Stephen F. Siegel, Anastasia Mironova, George S. Avrunin, and Lori A. Clarke.
Using model checking with symbolic execution to verify parallel numerical
programs. Technical Report UM-CS-2005-15, Department of Computer
Science, University of Massachusetts, 2005.

[16] http://flash.uchicago.edu/ tomek/AMR/.

[17] Steven G. Parker. A component-based architecture for parallel multi-
physics PDE simula tion. In Proceedings of the International Conference on
Computational Scien ce-Part III, pages 719–734. Springer-Verlag, 2002.

[18] George Necula,
Scott McPeak, S.P. Rahul, and Westley Weimer. Cil:intermediate language
and tools for analysis and transformation of c programs. In Proceedings of
Conference on Compiler Construction, 2002.

[19] CIL. http://research.microsoft.com/zing/.

[20] Zing Modeling Language Specification.
http://research.microsoft.com/zing/ZingLanguageSpecification.pdf.

[21] Tony Andrews, Shaz Qadeer, Sriram K. Rajamani, Jacob Rehof, and Yichen
Xie. Zing: A model checker for concurrent software. In MSR Techinical Report
MSR-TR-2004-10, 2004.

12

	Context and Motivation
	An overview of complexity issues
	An Overview of MPI

	Model Extraction and Verification in Gauss
	Choice of Zing
	Model Extraction Details
	Library Modeling

	Experimental Results
	Concluding Remarks
	References

